
Lecture 15 - Current
A Puzzle...

Suppose an infinite grounded conducting plane lies at z = 0. A charge q is located at a height h above the conduct-

ing plane. Show in three different ways that the potential below the conducting plane is zero everywhere.

Solution

1. We can consider the space z < 0 to be inside of a giant hemispherical conductor which is bounded by z = 0 from 
above and by the infinite hemisphere everywhere below and around it. The potential on this entire conductor is 
0. One obvious solution is that the potential everywhere in this region is zero, and the Uniqueness Theorem 
guarantees that this is the only solution.

2. We could use an image charge to solve this problem. Recall that image charges are always located outside of 
regions(s) where the potential is to be calculated. Therefore, we are free to use any image charges we want in 
the region z > 0. One wise choice would be to put a point charge -q right on top of the charge +q, which would 
cancel all of the charges and yield potential zero everywhere. This result (which is only valid for z < 0), tells us 
that the potential below the conducting plate is zero everywhere. □  

3. In your book (more precisely, Figure 3.12), the case of a finite (ungrounded) circular disk conductor was 
discussed. In such a case, a total charge + q

2
 distributes itself (roughly) evenly on the underside of the 

conducting sheet. In the limit as the radius R of the disk goes to infinity, we recoup the infinite conducting 
plane, which would have charge density zero. Although this sheet is not grounded, it clearly has potential zero, 
and therefore grounding it will not change the charge distribution. Therefore, there will be zero charge density, 
and therefore zero potential, everywhere for z < 0.

4. Imagine that the infinite conducting plane is actually a conducting spherical shell with radius R and center 
(0, 0, -R) in Cartesian coordinates. The limit R →∞ would yield the same geometry as the conducting plane, 
and the electric potential inside of the grounded spherical cavity would be zero everywhere (this is the unique 
solution to Laplace's equation with ϕ = 0 everywhere on the boundary). Alternatively, you can imagine a sphere 
with radius R and center (0, 0, R) which contains the point charge. In this case, there would be a charge q

4 π R2  

distribution uniformly across the surface of the sphere, which goes to zero as R →∞, and therefore leads to zero 
potential everywhere outside the sphere (which corresponds to z < 0 in the case R →∞).

A Word of Warning

Solutions #3 and #4 probably disturbed you quite a bit, since we have never used the limiting case of an infinite 

sphere to characterize an infinite plane before this. And indeed, we could not have because the parallels between 

these two geometries only hold for conductors and not insulators. 

To see this, consider a large insulating spherical shell with radius R and constant charge density σ. The electric 

field inside the sphere is E = 0 everywhere while the electric field outside is E =
k 4 π R2 σ

r2 r

=

σ

ϵ0

R2

r2 r
. As we 

approach infinitesimally close to the sphere r → R, we obtain the result E =
σ

ϵ0
r
. Place the center of the sphere at 

(0, 0, -R) and take the limit R →∞. Although locally, the geometry around the origin resembles an infinite sheet, 

the global geometry certainly matters. Indeed, if we considered a real insulating infinite sheet on the x-y plane, the 

electric field would be E =
σ

2 ϵ0
z
 above the sheet and E = -

σ

2 ϵ0
z
 below the sheet.
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E=σ/ϵ0

E=0

E=σ/2ϵ0

E=σ/2ϵ0

Insulating sphere Insulating sheet

However, if we now consider an infinitely large conducting sphere and an infinite conducting sheet, the situation 

is different. In this case, we have the Uniqueness Theorem which tells us that if we have specified the potential on 

all conducting boundaries (and at infinity), then the electric potential has a unique solution. In this case, the 

specific geometry you choose does not matter, provided that you do not change the boundary conditions. In the 

puzzle above, the boundary conditions are V = 0 everywhere along the x-y plane, together with V → 0 at infinity. 

Both the infinite grounded sphere and the infinite grounded sheet satisfy these conditions, and hence by the 

Uniqueness Theorem they must yield the same solution, as indeed they do.

Similarly, as we will show below, the electric force felt by a charge Q as it approaches the surface of a grounded 

conducting sphere equals the same force felt by a charge Q as it approaches the surface of a grounded infinite 

sheet.

Advanced Section: Image Charge for Spheres

Image Charge for a Grounded Spherical Shell

Example

A charge Q lies at a distance A outside of a grounded conducting sphere of radius R. Prove that placing an image 

charge -q = -
Q R

A
 at a distance R2

A
 from the center of the sphere (along the same line as the charge Q) yields a 

constant potential 0 everywhere on the sphere. Use this to determine the force felt from the charge Q from the 

conducting sphere.

Solution

Let us determine the potential at point P, which lies at an angle θ relative to the line connecting the center of the 

sphere to the image charges.
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The distance from the charge Q to the point P equals 

rQ = (R2 + A2 - 2 R A Cos[θ])1/2 (1)

while the distance from -q to P equals

r-q = R2 + 
R2

A

2
- 2 R3

A
Cos[θ]

1/2
(2)

Therefore, the potential at point P equals

k Q

rQ
+

k (-q)

r-q
=

k Q

R2+A2-2 R A Cos[θ]1/2
-

k
Q R

A

R2+
R2

A

2
-2 R3

A
Cos[θ]

1/2 = 0 (3)

Since θ was arbitrary, this shows that the potential is 0 across the entire sphere. What an incredible result!

With this in hand, we can now easily calculate the force on the charge Q since it equals the force that the image 

charge -q would exert upon Q in the diagram above, which equals

F =
k(-q) Q

A-
R2

A

x


= -
k

Q R

A
 Q

A-
R2

A

x


= -
k R Q2

A2-R2 x


(4)

as desired. There are many exciting limits to check. For example, Exercise 3.46 examines the limit when the real 

charge is very close to the grounded sphere, in which case the setup must reduce to the image charge problem of a 

grounded infinite plane. □ 

Bump on a Plane

Example

An infinite conducting plane has a hemispherical bump on it with radius R. A point charge Q is located a distance 

R above the top of the hemisphere. Using the result of the previous problem, find the image charges needed to 

make the electric field perpendicular to the plane and the hemisphere at all points.

Solution

Recalling the result of the previous diagram, where A = 2 R, 
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we can try putting an image charge - Q R

A
= -

Q

2
 at a distance R2

A
=

R

2
 above the center of the hemispherical bump. 

But that will not be enough to ensure that the plane is equipotential; in order to do that we need to add two identi-

cal but opposite charges below the plane.

But wait, don’t the two extra charges that we just inserted mess up the potential on the hemisphere...?

No, they don’t! Because by the results of the previous problem, the bottom two charges (as well as the top two 

charges) cause 0 potential all over the sphere. Furthermore, the inner two charges and the outer two charges cause 

0 potential all over the plane. So in face, we have created an equipotential surface consisting of the union of the 

plane and the sphere (i.e. the solid and dashed surfaces in the diagram above), even though we don’t care about the 

bottom of the hemisphere or the equatorial disk inside the sphere (i.e. the dashed lines).

This solution can be easily generalized so that the charge Q is any distance above the hemispherical bump (but it 

won’t work for a charge Q inside of the hemispherical bump, since you could not setup image charges only in the 

outside region above the bump). A more sophisticated (and probably numerical) method would be required to 

compute the potential in such a case. □ 

Charge Inside a Spherical Cavity

Consider a neutral spherical conductor with an off-center spherical cavity.
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q

Let’s summarize what we know about this situation:

◼ By Gauss’s Law, a total charge -q must be induced on the inner surface of the conductor, and by neutrality a 
charge q must be uniformly distributed over the outer surface of the conductor. Therefore, the conductor will be 
at the potential k q

R
 where R is the radius of the conductor (ignoring the cavity), regardless of the position of the 

charge q

◼ If the point charge q is placed at the center of the cavity, then the charge -q will be uniformly distributed over 
the conductor’s inner surface, and the force on the point charge q will be zero by symmetry

◼ If the point charge q is not in the center, will it feel a force? Absolutely. We know that if the total charge -q on 
the inside of the conductor was spread uniformly, then the point charge q would feel no force anywhere in the 
cavity. But as the point charge q moves away from the center, the charge -q will accumulate more on the part 
of the cavity closer to q, which will lead to a force on q

◼ How large will the force on q be? We can use the method of images to find an exact force. Recall that 
conductor problems are equivalent if the boundary conditions are the same. In this case, we know exactly what 
the electric field will be outside the conductor and within the meat of the conductor. All that remains is to find 
the electric field inside the conductor’s cavity. This last problem is equivalent to finding the force on a point 
charge q inside of a conducting sphere of radius R (the same radius as that of the conductor’s cavity) and whose 
potential is k q

R
. 

◼ Define A to be the distance between the point charge q and the center of the sphere. We can use the image 
charge configuration by using an image charge - q A

R
 located at a distance R2

A
 from the center of the sphere

◼ This image configuration will ensure that the potential is zero everywhere across the spherical conductor. 
Since we want the potential of the conductor to be k q

R
, we add a charge q spread uniformly across the outer 

surface of the sphere. This uniformly spread image charge (which we note is on the outside of the region of 
interest and hence valid) will only ensure that the potential of the sphere is correct but will not actually 
change the force felt by q

◼ As a result, the force felt by the point charge when it is at a distance A from the center of the spherical 

cavity is 
A

R
q2

A-
R2

A

2  pointing away from the center of the sphere

Lecture 15 - 02-28-2019.nb     5

Printed by Wolfram Mathematica Student Edition



Theory

Current

Current is measured in amperes (1 A = 1 C

s
). The current density J  measures current per unit area, 

J

= n q u (5)

where n is the density, q is the charge, and u is the velocity of the moving charge. The current flowing along a 

surface S is given by 

I = ∫S
J

· ⅆa (6)

For a time-independent current distribution, the charge going into any surface must equal the charge flowing out 

of the surface (if the charge is accumulating, the situation is not time-independent). In such a case, we can write

∇ · J

= 0   (steady state current flow) (7)

Circuits

Circuits can be analyzed using the following three rules (known as Kirchhoff’s rules):

1. Ohm’s Law: The current through each element must equal the voltage across that element divided by the 
resistance of the element.

2. Charge conservation: The sum of current going into a junction equals the sum of current going out of that 
junction. This is charge conservation, ∇ ·J = 0, in circuit language.

3. Closed loops in electrostatic fields: The sum of the potential differences taken in order around a loop of the 
network, a path beginning and ending at the same node, is zero. This is ∮ E ·ⅆ s


= 0 for a static electric field in 

circuit language.

Current Problems

Synchrotron Current

Example

In a 6 gigaelectron-volt (1 GeV = 109 eV) electron synchrotron, electrons travel around the machine in an approxi-

mately circular path 240 meters long. It is normal to have about 1011 electrons circling on this path during a cycle 

of acceleration. The speed of the electrons is practically that of light. What is the current?

Solution

The number of round trips that each electron makes per second is 
3×108 m

s

240 m
= 1.25×106 1

s
, so that the charge passing 

any given point equals

1.25× 106 1
s
 N e = 1.25 × 106 1

s
 1011 1.6 × 10-19 C = 0.02 A (8)

The point of this simple problem is to demonstrate that nothing in our definition of current as rate of transport 

requires the velocities of the charge carriers to be non-relativistic and that there is no rule against a given charged 

particle getting counted many times during a second as part of the current. □ 

Combining the Current Densities
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Example

We have 5×1016 doubly charged positive ions per m3, all moving west with a speed of 105 m

s
. In the same region 

there are 1017 electrons per m3 moving northeast with a speed of 106 m

s
. What are the magnitude and direction of J?

Solution

Current density is given by J = q n u, so the magnitude of the two J’s are

Jion = (2 e) nion uion = 2 1.6× 10-19 C 5 × 1016 1
m3  105 m

s
 = 1.6× 103 A

m2 (9)

Jelec = (e) nelec uelec = 1.6× 10-19 C 1017 1
m3  106 m

s
 = 1.6× 104 A

m2 (10)

J ion points west and Jelec points southwest (due to the negative charge of the electron). Therefore, the components 

of the total current density equals

J


tot = J


ion + J


elec

= -Jion -
Jelec

2
, - Jelec

2


= -1.29× 104, -1.13× 104

(11)

The flipped direction of Jelec is easy to remember if you stick in the actual negative charge of the electron in the 

current density equation, Jelec = (-e) nelec uelec. □ 

Resistors

Example

What is the equivalent resistance for adding two resistors (with resistance R1 and R2) in series.

Solution

In a series circuit, the current through each of the components is the same, and the voltage across the circuit is the 

sum of the voltages across each component. For a current I, the voltage drop across each individual resistor equals 

I R1 and I R2, and therefore the total voltage drop is I (R1 + R2). Therefore, these two resistors are identical to a 

single resistor with resistance R = R1 + R2. □ 

Example

By solving the loop equations for the circuit shown below, derive the rule for adding resistors in parallel.

Solution

To obey Kirchhoff’s second rule (current in equals current out), we define the currents I1 and I2 to flow along the 

loops shown. The current through the middle segment equals I1 - I2 to the right. If we ultimately end up with a 

negative value, it means that we chose the wrong direction for one of our currents, but that is perfectly fine (just 

like finding a negative force actually means that the force points in the opposite direction).

We now want to use Kirchhoff’s third rule, which states the voltage drop across any loop is 0. To do this, we label 

different points on our circuit as A, B, C, D, E, and F, as shown below. We now pick a direction (we will choose 
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 points  pick  (we

clockwise for each loop) and calculate the total voltage drop around each loop.

A B

C D

E F

For the top loop starting at point A we move clockwise to point B. The voltage drop (i.e. the difference between 

the voltage VB at point B and the voltage VA at point A) is -I2 R2 across this resistor. We then continue clockwise 

until point D (where the voltage is the same as point B) and then to point C. The voltage drop from D to C due to 

the current I2 is -I2 R1, while the voltage drop due to the current I1 is +I1 R1 (note the plus sign! For resistors there 

is a voltage drop in the direction of the current, so for I1 the voltage at D is lower than the voltage at C, but since 

we are looking at the top loop we are moving in the reverse direction and computing the voltage at C minus the 

voltage at D). Therefore, Kirchhoff’s third rule for the top loop is

-(I2 - I1) R1 - I2 R2 = 0 (12)

Similarly, moving clockwise around the bottom loop, the voltage drop from C to D is (I2 - I1) R1 (i.e. the reverse 

of the voltage drop we just computed from D to C) plus the voltage drop in moving from F to E. Since we are 

current is flowing from the negative plate to the positive plate in the battery (the positive plate always is marked 

by the larger bar), the voltage drop here is the positive value ℰ. Therefore, Kirchhoff’s third rule for the bottom 

loop is

ℰ+ (I2 - I1) R1 = 0 (13)

Note that adding these two loop equations yields ℰ - I2 R2 = 0, which is the loop equation around the whole 

circuit. Thus we can solve for I1,

I1 = 
1

R1
+

1
R2
 ℰ ≡

ℰ

Reff
(14)

where 1
Reff

=
1

R1
+

1
R2

. The current through the battery is I1, so ℰ = I1 Reff  tells us that the effective resistance is Reff . 

□ 

Once you know how to add a circuit element (such as a resistor) in series and parallel, you can simplify any circuit 

with these elements down. For example, three resistors R1, R2, R3 in parallel would have resistance
1

Reff
=

1
R1

+
1

R2
+

1
R3

(15)

or equivalently

Reff =
R1 R2 R3

R1 R2+R2 R3+R3 R1
(16)

Some wise words from Wikipedia:

As an example, consider a very simple circuit consisting of four light bulbs and one 6 V battery. If a wire joins the 

battery to one bulb, to the next bulb, to the next bulb, to the next bulb, then back to the battery, in one continuous 

loop, the bulbs are said to be in series. If each bulb is wired to the battery in a separate loop, the bulbs are said to 

be in parallel. 

If the four light bulbs are connected in series, there is same current through all of them, and the voltage drop is 

1.5 V across each bulb, which may not be sufficient to make them glow. If the light bulbs are connected in paral-

lel, the currents through the light bulbs combine to form the current in the battery, while the voltage drop is 6 V 
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 through  light  battery,  voltage drop

across each bulb and they all glow.

In a series circuit, every device must function for the circuit to be complete. One bulb burning out in a series 

circuit breaks the circuit. In parallel circuits, each light has its own circuit, so all but one light could be burned out, 

and the last one will still function.

Mathematica Initialization
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